Introduction to C++ and Object-Oriented Programming
Outline

[image: image1.jpg]

Introduction to C++

and

 Object-Oriented Programming
Course Designed by Dan Saks

Presented by Leor Zolman
www.bdsoft.com
Synopsis:

The course presents C++ using an evolutionary approach. It starts with a critique of a moderate-sized C program, and then introduces C++ features to correct the flaws in that program. As the program evolves toward an object-oriented design, the course introduces more C++ features to improve the clarity of the design and the efficiency of the resulting code. Thus, rather than present language features out of context, this course presents each major C++ feature as the solution to a programming problem. In order to give the students a more realistic setting for using the language, the course concentrates on a handful of larger examples and exercises, instead of a smattering of small, isolated examples.

Prerequisites:

The attendees need not have any prior C++ experience, but should have some programming experience with C. (A reading knowledge is rarely sufficient.) In particular, they should come to the course with the ability to:

SYMBOL 183 \f "Symbol" \s 11 \h
read and write data declarations and function prototype declarations

SYMBOL 183 \f "Symbol" \s 11 \h
understand the interchangeability of pointer and subscripting notation

SYMBOL 183 \f "Symbol" \s 11 \h
work with structs and pointers to structs

SYMBOL 183 \f "Symbol" \s 11 \h
build programs from more than one source (.c) file

Format:

This course is normally taught in five full days. Excluding breaks, each day usually lasts about 6 hours. About 1/4 to 1/3 of the time is spent doing exercises.

Outline:

0) Introduction to the Microsoft Visual C++ 5.x/6.x environment

· Compilation, Linkage and Execution under the IDE

· Project/Workspace Management

· Correcting Syntax Errors

· Dynamic Debugging

1) Software Design Principles

· Cohesion / Coupling

· The Purpose for Data Types

· Abstract Data Types

· The Spirit of C

· The Spirit of C++

2) Design Principles in Practice

· iostreams

· Tag Names

· void *

· The new and delete Operators

· The const qualifier

· A Cross-Reference Utility;

· Data Abstraction by Separate Compilation

· Data Abstraction Using Structs

3) Classes and Objects

· Classes and Objects

· Basic Class Concepts

· Member Function Definitions and Calls

· Scope Regions

· Name Lookup

· Separating Design Decisions

· OOP Terminology

· Access Control

4) Resource Management

· Dynamic Arrays

· Constructors and Destructors

· Dynamic Arrays

· The Meaning of Privacy

· Copying Objects

· new and Constructors

· Guaranteed Initialization

· Generated Default Constructors

· Member Initializers

· Static Members

· Generated Destructors

5) Building Better Abstractions

· Inline Functions

· Function Overloading

· Function Signatures

· Logical vs. Physical const

· Lvalues and Rvalues

· References and Reference Parameters

· Reference-to-const

· const Member Functions

· Returning References

· Overloading const and non-const Member Functions

· Dangling References

· Copy Constructors

6) Operator Overloading and Type Conversions

· Operator Overloading

· Object Assignment

· A Class for Rational Numbers

· Temporary Objects

· Constructors as Conversions

· Default Function Arguments

· Friend Functions

· Conversion Operators

· Initialization vs. Assignment

7) Inheritance

· Is-A Relationships

· Object Conversions

· Calling Inherited Member Functions

· Generated Member Functions

· Static (Early) Binding

· Base Class Initializers

· Protected Members

· Inheritance vs. Composition

· Is-A vs. Has-A

8) Object-Oriented Programming

· Inheritance and Dynamic (Late) Binding

· An Example: File Systems

· Polymorphism

· Redeclaring Inherited Functions

· Common Interfaces Using Inheritance

· Static vs. Dynamic Type

· Virtual Functions

· Abstract Base Classes

· Pure Virtual Functions

· Virtual Overriding

9) Exception Handling

· Handling Errors

· setjmp() and longjmp()

· Exception Handling

· Partially-Constructed Objects

10) Templates

· Generic Functions

· Function Templates

· Template Instantiation

· Template Argument Matching

· Class Template

3
Course Designed by Dan Saks

Presented by Leor Zolman

