C++ for Non-C Programmers
 Course Outline
Page 1

[image: image1.jpg]

C++ for Non-C Programmers

A Seminar by Leor Zolman

For those who may not have two weeks to fully learn both C programming and the object-oriented enhancements offered by C++, this seminar offers an opportunity to learn and use the most essential components of both languages in one fast-paced, integrated week of hands-on training. The course begins by introducing the built-in data types, fundamental control structures and rich expression operator repertoire common to both C and C++. The second half of the course integrates the object-oriented features of C++ onto the basic framework of the Standard C common language subset. Also included is a brief introduction to the Standard Template Library (“STL”), C++’s new platform for generic programming.
A. Each student will receive a copy of the textbook C++ Primer Plus by Stephen Prata (4th edition), along with a disk containing all course examples, lab exercises and solutions.

Prerequisites
Participants should have significant prior programming experience, though not necessarily in C or C++. This course is not recommended for anyone who has never written software applications outside of an introductory programming class.

Format:

This course is normally taught in five full days. Excluding breaks, each day usually lasts about 6 hours. About 1/4 to 1/3 of the time is allotted for exercises.

II. Getting Started

A. Fundamentals of Programming
1. Evolution of Programming Languages

B. History of C and C++

C. Overview of C / C++ Features

D. Software Development

1. Single vs. Multi-Module Programs

III. Development Tools

A. Windows-Based Development

B. Microsoft Visual C++ 6.x

C. The Integrated Development Environment

D. IDE Source-Level Debugging

IV. Elements of C/C++

A. The Token Stream

1. Expressions

2. Statements

B. Declaring Variables

C. Statement Blocks

D. Functions

E. Prototypes

F. The Preprocessor

V. Data Types

A. Identifiers

B. Reserved Words

C. Data Definitions

D. Fundamental Data Types

E. Constant Expressions

1. Integer Constants

2. String Constants

3. Floating Point Constants

F. Type Modifiers

1. Long

2. Short

const

VI. Operators

A. Arithmetic Operators

B. Type Conversion Rules

C. Type Casts

VII. Derived Types

A. Arrays

1. Memory Layout

2. Initialization

3. Strings as char Arrays

B. Structures

1. Definition Syntax

2. Tags

3. Accessing Members

C. Pointers

1. Indirection

2. Pointer Definition

3. Pointer Indirection

4. Indirect Assignment

5. Pointers vs. Arrays

6. Dynamic Allocation

7. Structure Pointers

VIII. Loops and Relational Expressions

A. While

B. for

C. Increment / Decrement Operators

D. Relational Operators

E. Precedence and Associativity

F. String Comparison

G. do…while

IX. Conditional Testing

A. if, if…else

B. Logical Connectives

C. switch

D. break and continue

while/for duality

X. Functions

A. Definition Syntax

B. return Statement

C. Formal Parameters

D. Call by Values vs. Call by Reference

E. Prototypes

F. Header Files

G. Passing Pointers

H. Passing Arrays

I. const parameters

J. Recursion

K. In-line Functions

L. References

M. Default Arguments

N. Function Overloading

XI. Data Scope and Lifetime

A. Files vs. Block Scope

B. Storage Classes

C. Linkage

D. Lifetime

E. static data

F. register data

XII. Objects and Classes

A. Object Oriented Development

B. Abstract Data Types

C. Classes

D. Access Specifiers

E. Class Definition

F. Class Implementation

G. Member Functions

H. Inline Member Functions

I. Constructors

J. Object Initialization

K. Member Initializers

L. Destructors

XIII. Source Files Management

A. Projects

XIV. Operator Overloading

A. How to Overload Operators

B. Generalized Stream I/O

C. Standard Conversions

D. Constructors as Conversions

E. Friend Functions

F. Static Member Data

XV. Class Implementation

A. Generated Member Functions

B. The Default Constructor

C. Copy Constructors

D. Shallow vs. Deep Copy

E. Overloading the Assignment Operators

F. this

XVI. Inheritance

A. Class Hierarchies

B. The protected Access Specifier

C. Accessor Functions

D. const Member Functions

E. Lvalues and Rvalues

F. Is-A vs. Has-A Relationships

G. Base Initializers

H. Object Conversions

XVII. Polymorphism

A. Static vs. Dynamic Binding

B. Virtual Functions

C. Abstract Base Classes

D. Pure Virtual Functions

E. Multiple Inheritance

F. Templates and the STL

G. Function Templates
H. Class Templates

I. Interaction of STL Components

J. STL Containers

K. STL Iterators
L. STL Algorithms
M. Function Objects

Copyright © 1999-2003 by Leor Zolman

