	[image: image11.emf]
	[image: image12.jpg]

Transforming IDMS Transactions into Web Services

Introduction

z/Services Transformers publish IDMS transactions as Web Services utilizing the Simple Object Access Protocol (SOAP) and Web Services Description Language (WSDL) in one simple configuration step. Integration challenges are eliminated when mainframe business logic can be accessed without mainframe expertise.

Problem Statement

An existing mainframe transaction exists that must be utilized in a new application being developed in Microsoft’s Visual Studio .NET. The mainframe transaction resides on a z/OS mainframe inside of a production IDMS-DC region.

Challenge #1: the developer must be provided some information about the services, operations, and interface that must be used to access the business rules implemented in the IDMS transaction.

Challenge #2: the developer must have an easy process to follow to incorporate a call to this transaction, obtain the results, and continue with the development of the new application.

Challenge #3: the developer must be protected from understanding the internals of the mainframe system, IDMS, ADSO or any other architectural difference between the development environment being used and the legacy application.

Challenge #4: the IDMS administrator must be able to publish web services without platform specific application development expertise.

z/Services Architecture

[image: image1.png]z/Services Architecture

H Introspection cIcs
Developer T|T Exccution 3270 Bridge
C|T Services [msma |
OTMA
s, . PP SOAP/WSDL p—
COM/Net| | J2EE }I) R[| WebServices || CATMSTC
S
ASFH IsP|| |P SSL OCA-Extenders
Workload Manager /08

Publishing Web Services with z/Services Transformers

z/Services Transformers provide the ability to publish a transaction as a web service in one simple configuration step. The administrator must know 3 things:

· The name of the COMM AREA

· The name of the Transaction Program

· The name of the Region where the transaction executes

A sample web service might be defined as follows:

<WebServices>

 <Service name='TestAdso' tp='IDMS14'

 NameSpace='http://test.com/webservices/'>

 <Operation name='webdialg' program='WEBDIALG'

 commarea='WEBREC' dircommarea='/COMMAREA/' type='COBOL'

 description='WebServices using ADS Online' link='internal'

 </Service>

In this example, we have:

· A web service named “TestAdso”

· The web service runs transaction(s) in production region “IDMS14”

· The service contains 1 operation named “webdialg”

· The operation “webdialg” runs transaction program “WEBDIALG”

· The operation “FindEmployee” uses COMM AREA “WEBREC” found in the data set specified by “/COMMAREA/”

· The COMM AREA is defined by “COBOL” programming structures

[image: image2.png]File Edit Edit Settings Menu Utilities Compilers Test Help
EDIT Q1S . INRACCES . TES3 . HTML (SERVICES) - 01.06 Columns 00001 00072
Command ===> Scroll ===> CSR
e O Y
000001 <WebServices>
000002 <Service name='TestAdso' tp='IDMS14'

000003 NameSpace='http://test.com/webservices/'>

000004 <Operation name='webdialg' program='WEBDIALG'

000005 commarea='WEBREC' dircommarea='/COMMAREA/' type='COBOL'
000006 description='WebServices using ADS Online' link='internal'

000007 </Service>
000008 <Service name='TestCics' tp='call'

000009 NameSpace='http://test.com/webservices/'>

000010 <Operation name='AddNums' program='IEFBR14'

000011 commarea='CACOB0l' dircommarea='/COMMAREA/' type='COBOL'
000012 description='Add two number'/>

000013 <Operation name='AddNum3' program='PGMCOBO3'

000014 commarea='CACOB03' dircommarea='/COMMAREA/' type='COBOL'
000015 description='Complex array'/>

000016 <Operation name='Display’' program='PGMCOBO04'

000017 commarea='CACOB04' dircommarea='/COMMAREA/' type='COBOL'
000018 description='Calls PGMCOB04' format='no'

000019 security='SoapHeader' />

Web Services are defined in a configuration file that resides on the mainframe and controls the operation of the z/Services Execution Services. A Service is the group of available functions that are available for a developer. Consider an Order Entry service that would publish several transactions to support the order entry process. The Service is defined with a unique name and connection to a specific region. Many mainframes have multiple transaction regions for performance, capacity, or security reasons.

An Operation is the representation of a single transaction available through the parent service and is defined by the name and location of the COMM AREA and the name of the transaction program. The COMM AREA is the interface for transferring input and output parameters between the application that consumes the web service and the transaction that performs the business logic.

Obtaining Information About Available Web Services

There are 2 key processes for finding information and specification about published web services:

1. Universal Discovery, Description Interface (UDDI) directories

2. Web Services Publisher directories

z/Services published web services can be published in UDDI directories including the Microsoft UDDI directory or the IBM UDDI directory. These UDDI directories are universally available over the internet and InnerAccess Technologies has published test web services on both services.

z/Services Transformers publish information about the available web services. Simply direct a browser to: http://<your_mainframe>:<port>/service_name.asmx. The “asmx” type may be replaced with “zws” to access information about the mainframe web service.

[image: image3.png]E

g ——— 7

Qutc- © [(A | Pt Fprwoee @ @3- 5 B - 7

dress]t jo7.69.50.27 0073 TestAdso.asme

dso Web Service - Microsoft Internet

plorer

“The following operations are supported. For a formal definition, please review the

WebServices using ADS Online

You can alsa review the

The web interface provides several key pieces of information that are valuable to the developer of applications that consume web services:

· The URL is used by UDDI directories to assist universal access to the web service

· The URL is used by the .NET Add WebReference dialog to provide access to web services within a .NET project

· The Service Description provides access to the Web Services Description Language (WSDL) XML definition of the web service

· The Operation (webdialg) provides a sample SOAP request and SOAP response for the developer to provide a reference point for comparisons between expected and actual interactions between the application and web service

· The COMMAREA link provides information about the actual COMM AREA that is used by the transaction program. This will provide the developer with the developer with useful information about how to interact with the web service

[image: image4.png]2 hitp://67.69.50. Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qo - © [¥] [B] @) Osewren Foravores @rese @) (- 1 F [) B

aciress | €] itp167.69.50.27:0073 Testidso asmaWsDL Links >
- <definitions xmins: http="http://schemas.xmlsoap.org/wsdl/http/" xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/" l
wmins:s="http://vwww.w3.0rg/2001/XMLSchema" xmins:s0="http://test.com/webservices/"
#mins: soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmins: mime="http://schemas.xmisoap.org/wsdl/mime/"
targethamespace="http:/ /test.com/webservices/" xmins="http://schemas.xmlsoap.org/wsdl/">
- <types>
- <sischema elementFormDefault="qualified" targetNamespace="http://test.com/webservices/">
- <s:ielement name="webdialg">
- <s:complexType>
- <sisequence>
<sielement minOccurs="1" maxOccurs="1" name="webdialgInput" type="s0:WEB-RECORD" />
</sisequences
</s:complexTypes
</sielement>
- <s:element name="webdialgResponse's
- <s:complexType>
- <sisequence>
<sielement minOccurs="1" maxOccurs="1" name="webdialgResult" type="s0:WEB-RECORD" />
</sisequences
</s:complexTypes
</sielement> ‘=
- <s:complexType name="WEB-RECORD">
- <sisequence>
<sielement minOccurs="1" name="WEB-INPUT1" type="s:string" />
<sielement minOccurs="1" "WEB-INPUT2" typ
<s:element minOccur 1"
<s:element minOccurs="1"
<s:element minOccur 1"
<sielement minOccurs="1" maxOccurs="1" name="WEB-OUTPUTS" type="s:string" />
<sielement minOccurs="1" 1" name="WEB-MESSAGE" typ: string" />
</sisequences
</sicomplexTypes
</sischemas
</types>
- <message name="webdialgSoapIn">
<part name="parameters" element="s0:webdialg" /> o

. fmeccanes

Sample WSDL dynamically published by z/Services Transformers specifying the available operations and parameters used by the operations defined in the web service.

[image: image5.png]3 TestAdso Web Service - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q- O [x] [O Prowen Frrmoree @ @ (3 23 L) 3

Adhess |] hitp://67.69.50.27:8073(TestAdso. asmx?op=webdialy VB ks

Click here for a complete lst of operations.

webdialg
WebServices using ADS Oniine

soap

‘The following is a sample SOAP request and response. The placeholders shown need to be replaced with actual values.

POST /TestAdso.asmx HTTP/1.1

Host: 067.069.050.027:8073

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "http://test.com/vebservices/vebdialy”

<3l version="1.0" encoding="utf-g"2>

<soap:Envelope xmlns:xsi="http://wwy.ws.org/2001/XHLSchena- instance” xulns:xsd="http://vww.u3 .0rg/2001/

<soap:Body>
<webdialg xmlns="http://test.con/vebservices, ">
<webdialginput>
<VEB-INPUT1>string</ VEB-INPUTL>
<VEB-INPUTZ>string</ VEB-INPUTZ>
<VEB-INPUT3>string</ WEB-INPUT3>
<VEB-OUTPUT1>string</VEB-OUTPUT1>
<VEB-OUTPUTZ>string</VEB-OUTPUTZ>
<VEB-OUTPUT3>string</VEB-OUTPUTS >
<UEB-HESSAGE>string</UEB-HESSAGE>
</webdialginput>
</webdialg>
</soap:Boay>
</soap:Envelope>

The sample SOAP request provided to aid the developer in contrasting expected and actual messages between the application and the web service. A sample SOAP response is also provided by z/Services Transformers.

[image: image6.png]3 TestAdso Web Service - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q- © - [} B O] Dsewn Forones @i

dress] tpj67.69.50.27:5073TestAcso-asmctcommarea=ebdioly

Click here for a complete lst of operations.

webdialg
WebServices using ADS Oniine
soap
he following is the COMMARER used by the program.
01 WEB-RECORD.
05 WEB-TNPUTI

PICTURE 15 9(4)
USAGE IS DISPLAY

05 VEB-INPUTZ
PICTURE 15 X(4)
USAGE IS DISPLAY

05 VEB-INPUT3
PICTURE IS X(30)
USAGE IS DISPLAY

05 VEB-OUTPUTL
PICTURE 15 9(4)
USAGE IS DISPLAY

05 VEB-OUTPUTZ

PICTURE IS X(4)

The COMM AREA provides the developer with useful information on the parameters used by the mainframe transaction. z/Services Transformers support complex COMM AREA definitions including:

· Nested OCCURS DEPENDING ON

· REDEFINE

· COMM AREA size greater than 32KB

Consuming z/Services-based Web Services with .NET

The .NET application being developed for demonstration purposes will request a web service from the mainframe that performs a name lookup from a supplied employee number.

The steps required to access a web service operation in .NET are:

1. Add a WebReference in the project

a. Solution Explorer – right click on application and select Add Web Reference

b. Select Add WebReference from the project pull down menu

2. Create new Web Services object in the .NET application

3. Create a new function for the selected Operation in the .NET application

4. Initialize the input parameters required by the web service operation

5. Call the web service operation

6. Process the result variables returned by the web service operation

Adding a Web Reference

[image: image7.png]Add Web Reference

krsss [FEp167.69.50,27 G073 Tt smc? WL

- <definitions
srrilns: http="http://schemas xmlsoap.org/wsdl/|
srmins: soap="http:/ /schemas xmlsoap.org/wsdl/
srrilns: s="http:/ /viveve.w3.0rg/2001/XMLSchema'
srmins: s0="http:/ /test.com/webservices/"
srmins: soapenc="http://schemas.xmlsoap.org/so —
srilns: mime="http://schemas.xmlsoap.org/wsdl/
targethiamespace="http://test.com/webservices,
smins="http://schemas.xmisoap.org/wsdl/">
<types>
- <sischema

elementFormDefault="qualified"
targethiamespace="http:/ /test.com/webservi
- <s:element name="webdialg">
- <s:complexType>
- <sisequence>
<s:element

name="webdialgInput"
type="s0:WEB-
RECORD" />
</s:sequences
</s:complexType>
</s:element>

Avalable references:

Web Services

5 http:/67.69.50.27:8073 TestAdso asmxaWsDL
e Contract

radstorems | coea o

The Add Web Reference dialog will automatically detect the web service definition from the highlighted URL. The actual web reference has the “?WSDL” string added to the end of your web service definition URL. Simply click on Add Reference to make the web service available to the .NET project.

[image: image8.png]WindowsApplication - Microsoft Visual Basit

ET [run] - Form1.vb [Read Only]

He £ Uew o G Do Dok Wrw e

R T -T IR - B - - BERT

A Sl e% Rk ED 6 0.

b m » o= Hex [+, Procan <] hread <] stack Frame. B
StrtPage | Formi.vb [Design] | Fermivb | 4 b x | solution Explorer - Windowsfpplica.e. 3 X
grorm1 <] [s@uttom_cik g waB.

[EPwslic Class Formi

Inherits System.Vindows.Forms.Form

Dim ws ks New WebReferencel.Testldso(]
Dim ca ks New WebReferencel.WEERECORD ()

g1 Vindous Form Designer generated code

a. VEBINPUTL
ca. VEBINPUTZ

TextBoxl.Text
TextBox2.Text

© Privace Sus Buctonl_Click(ByVal semder As Object, ByVal e ks System.Eventirgs)

| 193 Solution "webapplicationt. (1 project)
= A windowsapplication1
= (@) References
2 System
42 System.Data
43 System.Draing
43 System Wb Services
4 System Mindows. Forms
2 System
= (g Web References
© webReference
9] assembhyinfa.vb

Handles B

& romt b

Ca VEBTNPUTS - TextBoxd . Text

ca = vs.vebaialg(eal

TextBox4. Text = Ga. VEBOUTPUTL

TextBoXS. Text. = Ga.VEBOUTPUT

TextBox6. Text. = Ga.VEBOUTPUT

End s>

o rJ';;ﬁmmnawD Hramooes
= x| ook 2 x
T [vaue [Time e Lang
" B utos [& Locals | g watch 1 | "B ol Stack [T breakpoints | B Command Window |] Output |

Buld succesded

Ln 130 [E

has s

Using a Web Service in a .NET Application

Adding a Web Reference in a .NET application provides access to each operation defined in the service. The first step is to specify which web service is to be used by the project. The correct code is:

 Dim ws As New WebReference1.TestAdso()

The second step is to define a function that provides access to the COMM AREA, fn, that specifies the communication area between the application and the web service:

 Dim ca As New WebReference1.WEBRECORD()

The parameters required as input to the transaction must be specified prior to calling the operation:

ca.WEBINPUT1 = TextBox1.Text

ca.WEBINPUT2 = TextBox2.Text

 ca.WEBINPUT3 = TextBox3.Text

Calling the web services is a simple process of calling the method that represents the operation in defined in the web service:

ca = ws.webdialg(ca)

After calling the web service operation, the project will have access to the parameters set by the mainframe transaction. To retrieve the employee name requested, specify:

TextBox4.Text = ca.WEBOUTPUT1

 TextBox5.Text = ca.WEBOUTPUT2

 TextBox6.Text = ca.WEBOUTPUT3

The application is ready to be tested in debug mode, or for expert typists that application can be built and deployed without debugging.

The entire application will look similar to:

Public Class Form1

 Inherits System.Windows.Forms.Form

 Dim ws As New WebReference1.TestAdso()

 Dim ca As New WebReference1.WEBRECORD()

 Private Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles Button1.Click

 ca.WEBINPUT1 = TextBox1.Text

 ca.WEBINPUT2 = TextBox2.Text

 ca.WEBINPUT3 = TextBox3.Text

 ca = ws.webdialg(ca)

 TextBox4.Text = ca.WEBOUTPUT1

 TextBox5.Text = ca.WEBOUTPUT2

 TextBox6.Text = ca.WEBOUTPUT3

 End Sub

End Class

The application form will require 7 controls:

1. Push button named “Button1”

2. 3 Text boxes for input

3. 3 Text boxes for output

	Before Clicking
	After Clicking

	[image: image9.png]TexBort

TenBors

TenBort

Buttan

	[image: image10.png]

Summary

z/Services Transformers provide a single configuration step that transforms mainframe based transactions into web services using SOAP and WSDL. Several integration challenges are solved with z/Services Transformers:

1. Information about the web services is easily accessible by the developer of applications that consume the web service.

2. Calling mainframe based web services is a simple as calling any other web service.

3. Developers of applications that consume web services are protected from the internals of mainframes and mainframe applications.

4. The transformation of mainframe transactions into web services is fast and easy.

Non-Highlighted features include:

· No modifications to existing mainframe application programs are required

· No additional programs are required on the mainframe

· No import/export of mainframe application code or COMM AREA copy books is required

· XML parsing is performed in a separate address space outside of the application address space

· Avoids any additional workload being added to application regions

· Minimizes license fees calculated with the Measured Usage License Charge MULC

· Avoids any impact on capacity of the production region

· No intermediate application server is required to support the publication of mainframe web services

Take the 1st Step

InnerAccess Technologies invites you to participate in the W-STEP (Web Services Technical Evaluation Program) to experience and evaluate z/Services in your environment with your applications with your staff.

Contact us: info@inneraccesstech.com

[image: image11.emf][image: image12.jpg]